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U N I V E R S A L  R E G U L A R I T I E S  OF H Y D R A U L I C  F R A C T U R I N G  

W I T H I N  T H E  F R A M E W O R K  OF THE P E R K I N S - K E R N - N O R D G R E N  M O D E L  

O. P. Alekseenko,  A.  M. Vaisman, and A. F. Zazovskii x UDC 539.375 

An algorithm that permits one to find a solution of the Perkins-Kern-Nordgren problem for 
�9 standard regimes of hydraulic fracturing is suggested. The universal qualitative specifics of the 
behavior of a crack is shown; in particular, the asymptotics of crack opening at the tip is found, 
and it is shown that the character of the crack is determined by the rate of increase or decrease 
in the crack size. 

The design of hydraulic fracturing of a productive reservoir is based on results of a theoretical analysis 
of three basic models [1]. They differ by the geometry of a developing crack: a rectihnear crack in a plane, 
a circular crack in space, and a ribbon-shaped crack growing in the horizontal direction of the ribbon whose 
plane is oriented vertically. The last model, which is usually called a Perkins-Kern-Nordgren (PKN) model, 
is developed to a greater extent. In the simplest case of the propagation of a crack of a constant height where 
a viscous fluid is injected into it, the Nordgren equation [2] holds. The fracture fluid is injected from a source 
in the center. Within the framework of the given model, the strength properties of the medium are ignored. 

In previous studies of the PKN model, due attention has not been given to the fact that the tip of 
a crack is the singular point of the Nordgren equation. Generally speaking, a boundary layer is formed in 
the neighborhood of the singular point in which the solution changes rapidly, and, consequently, standard 
finite-difference methods work poorly. To prehmt difficulties that encounter, we shall turn, for example, to 
one of the boundary conditions for the Nordgren equation, namely, the equality to zero of the gradient of the 
fourth degree of opening (pressure) at the boundary. It corresponds to the impermeability through the crack 
tip. In the simplest difference approximation of the derivative at the boundary, the pressure at a distance of 
the grid step from the tip coincides automatically with the pressure at the boundary, whereas, in reality it 
should vary abruptly. 

An attempt to avoid this difficulty by the formulation of a no-flow condition in the form of an integral 
law of conservation of mass [1] rather than in the differential form only disguises it if special measures are not 
taken, but does not eliminate it. 

If the asymptotic behavior of the pressure in a boundary layer, which is closely connected with the law 
of crack growth, is not taken into account in a numerical calculation, this can have a significant effect on the 
a~curacy of determination of the crack velocity. We shall illustrate this statement on the problem of a large 
crack with a uniform grid, when the longitudinal size of the boundary layer can be considerably smaller than 
the grid step. It is possible to make an attempt to approximate its abrupt change in a thin boundary layer 
by a pressure jump at the boundary. However, such a scheme is incorrect, because an uncertain parameter 
(the magnitude of the jump) appears and the variation of this parameter changes the velocity. There exists a 
magnitude of the jump at which the crack stops, the law of conservation of mass being fulfilled. 
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It is important that the errors in the velocity, accumulated during the prehistory of hydraulic fracturing, 
have an effect on the basic design parameter, namely, the crack size. Finding an explicit form of the asymptotics 
at the tip eliminates difficulties in the determination of the crack velocity. 

1. We shall consider a symmetric crack of height 2H and length 2L. The crack develops in a permeable 
elastic medium. The X axis is assumed to be the direction of crack growth in a horizontal plane. The coordinate 
origin is located in the center of the crack. The fluid pressure is assumed to be constant in height and to vary 
slowly along the X axis, i.e., the profile of crack opening corresponds to a constant pressure, and it is elliptic 
in each vertical cross section ( X = const). The maximum opening 2W(X, L) in this cross section is on the 
horizontal axis of the ellipse, and it is proportional to the exceeding of the pressure P(X, L) - Pc over the 
pressure of crack opening (closure) Pc [1]: 

DW 1 E 
P - P c =  H ' D = 2  1 - v  2' (1.1) 

where the proportionality coefficient D represents a combination of standard elastic constants of the medium. 
In terms of the opening W(X, L) and the local flow rate Q(X, L) through the crack's cross section 

passing through the point X, the equation of a laminar flow of a fluid with viscosity # in a thin layer, which 
fills in the crack hollow, can be written, with allowance for (1.1), in the form [2] 

OW4 = -16p(~rD)-lQ. (1.2) 
OX 

Let us assume [1] that the fluid losses in a permeable medium from a unit surface of a crack obey the 
Carter law [3], and we shall denote the fluid-loss coefficient by -f [3], and the every-second volume of fluid 
losses from a part of the surface located to the right of the separated cross section X by Q~. In accordance 
with the Carter law, the fluid losses Q~ can be presented in the form 

L 
dX I 

Q.f = 4'7H ] 
x 

where T I is the moment at which tl~e distance from the center to the crack tip reaches the value X' an(l T is 
the current moment of time when the distance becomes equal to L. With allowance for the no-flow condition 
at the edge, the flow balance through the crack's hollow between the cross sections X and L can be presented 
in the form 

d L 
Q = Q'r + ~rH -~  ] WdX'. (1.3) 

x 

Substituting (1.3) into (1.2) and differentiating with respect to X, we obtain the Nordgren equation [2] 

__ " 0 W  (1.4) 

We consider that the crack length is equal to zero at the initial moment: W(X,T)IT= O .  -- O. 
Along with the initial condition, Eq. (1.4) is supplemented by three boundary conditions (one condition 

more than the differential order of the equation requires), which allows one to determine additionally the crack 
velocity. 

The condition in the center of the crack is specified by the source flow rate 2Q0. According to (1.2), 
with allowance for the symmetry of the crack branches this condition is written as 

~rD aW4[ = - Q o -  
16# OX Ix=0 

at the crack edge. In essence, the condition W(X, L)Ix= L = 0 is the Two conditions imposed a r e  

definition of the edge of a crack. 
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As follows from relation (1.2), the differential boundary condition, which reflects the absence of a flow 
through a mobile boundary, has the form 

OW4(X, L) I = 0. 
OX Ix=z, 

In practice, three regimes of hydraulic fracturing are used most frequently. Injection is usually 
performed with a constant flow rate Qo = Q01 to facilitate the control of hydraulic fracturing, because 
the interpretation of the data on the pressure P versus time T in the center of a crack becomes simpler. Then, 
for deriving an additional information on the crack, the pressure is frequently measured after the injection is 
stopped. A productive well either is closed, i.e., the fluid flow from the source in the center Qo = Q02 = 0 is 
cut off, or it works in a flowback regime with flow rate Qo = Q03 = -aQ01 (c~ = const, c~ ,,, 1) comparable 
with the flow rate during injection [1]. 

After cessation of injection, we distinguish two stages of successive development of the crack: a stage 
of crack growth, when the crack length increases, and a relaxation stage which corresponds to a decrease in 
its length. 

In determining the number of real parameters of the problem, we shall pass to the dimensionless 
variables q = Q/Q. ,  w = W/W.,  l = L /L . ,  z = X/L. ,  t -- T /T. ,  and t' --- T'/T, ,  where the scale factors are 
of the form 

= q0 , = = = 
\ 7 /  16# Q , '  \ 47 / "  

In the dimensionless variables, the equation and the initial and boundary conditions take the form 

azw 4 aw 1 
Oz z o~ -" f '  f -- x/T-Z--~; (1.6) 

wL__. o = 0, wL= 1 = 0; (1.7) 

q(x, ol.=, -~ =o, qc,,ol,=o -~ = 0x  I.=~ = 0 z  I , = 0 = q ~  (1.8) 

According to (1.3), we present the flow rate q(z) in an arbitrary cross section z in the form 

t 1 

X 

note that, in accordance with (1.2), at inner points we have 

aw4( , t) (1.9) 

In the chosen variables, the magnitude of the flow rate q0 in the center is equal to unity during injection, 
zero in the closed well, and - a  during flowback. 

It is seen from the formulation of problem (1.6)-(1.8) that,  in an injection regime, the function w(z, t) 
does not depend on the physical constants and the regime parameters. In this sense, the solution has a 
universal character. After the  well is closed, the quantity w(z,t ,  to) depends on the injection t ime to. The 
flowback regime is characterized by one more additional parameter a. 

In the chosen variables, the Nordgren equation does not contain explicitly a parameter that  would 
characterize the relative effect of two major factors forming the geometry of a crack: flow losses to a permeable 
medium and a fluid flow inside the crack. The crack length 21 plays this part. The fluid losses are insignificant 
for small I. Their effect becomes noticeable when I reaches values close to unity. The total fluid losses thus 
become comparable with its volume in the crack. For large 1, the crack behavior is determined by fluid losses. 
As is known [1], in this case w ,,, 11/4. 

2. We shall consider an injection regime. We shall rewrite the expression for the higher-order derivative 
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in Eq. (1.6) in the form 

02w 4 _ 0 (4w3)0w 
Ox2 - Oz 

Clearly, the process of crack opening is described by the nonlinear diffusion equation with power diffusivity 
4w 3 and the fluid losses-induced right-hand side. The variance of the diffusivity along the crack reflects very 
important properties of a hydraulic fracture. For constant diffusivity, at all moments of time, except for the 
initial one, the solution is formally different from zero everywhere, i.e., the crack length is infinite, and it 
makes no sense to speak about the rate of its increase. For variable diffusivity, its gradient at the edge is 
proportional to the crack velocity. 

We shall consider the crack profile in the crack-tip vicinity. It is difficult to analyze Eq. (1.6) in the 
neighborhood of a singular point in the variables x and t, because the derivatives of w with respect to both 
variables tend to infinity for x --. I. It is better to pass to a mobile coordinate sys tem,  = l - x with a center 
on the crack tip and to replace the variable t by 1. From the physical viewpoint, it is natural to expect that 
w(,,  l) will be a smooth function of I for all values o f ,  (in what follows, we shall use the former designation 
for the function of new variables). 

We shall denote the crack velocity by c(l) = dl/dt. After simple manipulations we write Eq. (1.6) and 
the boundary conditions in the new coordinates as follows: 

c92w 40 ,  2 f.~,Ow v. '~ t~f~ c(/-~") " j d ~  ]-112., 

0 

I Ow4(,, I) = O, = 1. (2.2) 
= o ,  = o,  o, o, 

In this formulation, the opening, which corresponds to the current length I, depends explicitly on 
the crack velocity during the entire prehistory. The velocity c(1) should be compatible with the formulated 
boundary conditions. 

We note that w -:+ 0 for ~ -+ 0 by virtue of the boundary condition, but the derivative Ow/O~ increases 
infinitely. At the same time, aw/al .-.+ o, which reflects the smoothness of the opening relative to the variable l. 
Thus, for smal l ,  one can expect the fuUfilment of the inequality 

a~( , ,  l) aw(, ,  l) 
ol O, 

Ignoring the derivative Ow/i31 in comparison with tgw/a~ and substituting approximately c(l - , )  for 

e(l) for small , ,  we shall reduce the equation to the o n e - d i m e n s i o n a l  e q u a t i o n  (w4)"  - ew '  - = 0 (the 
differentiation with respect t o ,  is primed). Having integrated this equation, with allowance for the boundary 
conditions ~ -- 0 we derive the fn~t-order equation (w4) ' = ew + 2V4"~. For ~ ~ 0, the function w tends to 
zero slower than x/r(. Therefore, leaving only the principal term in the right-hand side and cancelling out one 
degree of w, we rewrite the equation in the form 

(4w3)  ' = 3r (2.3) 

It follows that the diffusivity gradient at the boundary is equal numerically to the tripled dimensionless 
fracture velocity. 

The solution of Eq. (2.3), which vanishes at the boundary, has the form w a = (3/4)c~. This formula 
determines the asymptotic behavior of the opening at the crack tip in an injection regime, and it is seen that, 
in fact, the derivative tgw/ig, increases unboundedly and aw4/a, -... 0 fo r ,  --. 0. 

It is noteworthy that the point is precisely the crack growth. For a negative c, there is no solution of 
the type considered that would have a physical meaning. 

In the domain of smooth behavior of the desired functions (outside the boundary layer), in considering 
the injection regime, it is appropriate to solve numerically problem (2.1) and (2.2) by a standard sweep method 
with iterations over the nonlinearity. Here the established asymptotics allows one to determine the value of 
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Fig. 1 

the velocity c from the "matching" conditions of the numerical and asymptotic solutions. By construction, 
the latter is subject to the homogeneous boundary conditions specified at the tip. 

Figure 1 shows calculation results concerning the basic parameters of a growing crack: the dependence 
of the crack opening in the center w0 = w(l, l), calculated for an injection regime (Fig. la), and the crack 
velocity c (curve 1) and the injection time ~ (curve 2) versus the length l (Fig. lb). 

3. We shall consider the crack behavior after the well is closed. A perturbation, which is generated by 
a change of the regime, propagates over the crack with a finite velocity. Therefore, the crack growth does not 
stop instantly and proceeds until the perturbation reaches the crack-tip vicinity. After that, the flow from the 
basic part of the crack decreases and fluid losses begin to play the major role. While the growth continues, 
the crack can be considered within the framework of the scheme described above. From a formal point of 
view, the only difference is the zero flow rate in the center [the last boundary condition (2.2) will become 
homogeneous]. However, when the crack reaches a maximum size, the asymptotics at the tip varies markedly. 
It requires an appropriate modification of the calculation scheme. 

W e  shall study the behavior of the opening in this case. We make an assumption, which will be justified 
in our subsequent consideration, that the boundary layer at the tip disappears and i~w/a~ is limited at the 
point ~ - 0. By virtue of the boundary condition w(0) = 0, in a small vicinity of the tip, the quantity to is 
of the order ~, and the derivative aw4/a~ is of the order ~3. Consequently, the local flow rate q tends to zero 
at ~ --+ 0 as ~3. Thus, both homogeneous boundary conditions are automatically satisfied. For small ~, the 
derivative Oq/O~ = Ow/cgt + 1/~/t - t ~ tends to zero as ~2, and, hence, the derivative Oto/at at the boundary 
for z = l is equal to ato/o~t = -1/tVf{'~'~- t I. We emphasize that the moment t I refers to the injection regime, 
and t - t ~ does not vanish because the derivative has no singularity. 

Below, it will be convenient to regard to as a function of z and t. Let z(t) be the law of motion of 
an edge. By definition, the opening at the edge is equal to zero at any moment of time and, therefore, the 
cvndition dto = (i~to/az) dz + (i~to/o~t) dt = 0 is satisfied at the edge, and the velocity of motion of the tip c 
is representable in the form 

c - ~ - ~ = l  ~ . (3.1) 

Wi th  decrease in the length, the crack opening decreases to zero at a point at which the tip arrives, 
and the derivative a w / a z  is negative at this moment. According to (3.1), the velocity c is negative as well, 
as it should be at the relaxation stage, i.e., at the stage considered the above assumption of the absence of a 
boundary layer at the top is true. 

At the relaxation stage, it is convenient to formulate the problem in the form (1.6) and (1.7), together 
with the last condition (1.8) for q0 -- 0. Passing to a consideration of the current state, we assume the previous 
state of the crack, in particular, the gradient of opening at the edge, to be specified. Then, using formula 
(3.1), it is possible to find the velocity of the boundary at this moment, which will allow one to determine its 
current position as well. Thus, we come to a problem with known boundaries, one boundary condition being 
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given at each boundary. We emphasize that, in the case considered, the derivatives and the right-hand side 
of in gq. (1.6) have no singularities, and this allows us to employ the sweep method throughout the domain 
without any difficulties. The boundary condition for the flow rate at the edge is not used, but this is connected 
with the fact that  this condition is satisfied automatically in the absence of a boundary layer. 

Figure 2 shows calculation results for the opening w0 in the center (curve 1) and the length 1 (curve 2) 
as a function of time (at first, in an injection regime until the value 1 = 1 is reached and then for the zero 
flow rate until the crack is completely closed). 

As we have already mentioned, the curve to0(t) is universal for injection. It is natural that the behavior 
of the opening for the zero flow rate depends on the injection time to. However, after the perturbation of the 
crack profile, which is caused by a change of the regime, smooths out in its central part and the velocity of 
a fluid flow to the periphery decreases considerably, the subsidence in the center again will gain a universal 
character. Let us consider the Nordgren equation in a small neighborhood of the center. The smoothness of 
the profile means that  the derivative azw/0z  2 becomes a small quantity, so that,  for small z,  the Nordgren 
equation takes t h e  form 

0w 1 
~-=  tx//.:.~_ g~, (3.2) 

from which it follows that  the rate of subsidence in the center vicinity is determined only by fluid losses. 
We introduce the variable c: 

1" = ( t - t o ) / ( t c - t o ) .  (3.3) 
The moments tc and to, which correspond to the full crack closure and the cessation of injection, respectively, 
are regarded here as the functions of the crack length l0 at the moment to. 

Assuming that z = 0 in (3.2) and, hence, t' = 0, integrating over t, and passing to the variable c, 

we obtain w0 ~ 2vtT~c - 2V/0 -I- ( t o -  t0)c. It follows that,  for c --* 1, the function y(c) = to0(c)/(2Vrf~c - 

2Vt0 -k (to - t0)c) tends to unity. As is seen from Fig. 3, in the coordinates y, c the curves of opening reach 
almost simultaneously the common asymptotics in a broad range of l0 values (curves 1, 2, and 3 refer to 
10 = 0.01, 0.1, and 1.1, respectively). 

4. For a sufficiently intense outflow, there is a qualitative distinction in the crack behavior in different 
regimes, which is desirable to analyze. Of special interest is the effect of fluid losses on the quantity to be 
measured, i.e., the pressure in the center of the crack. To do this, we should make a preliminary analysis of 
injection and outflow in the limiting case of an impermeable medium. 

The equation and the initial and boundary conditions in this case look like 

~2W4 ~tO 
Oz 2 ---- ~-~; (4.1) 
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tolt=0 = 0, w]==l = 0; (4.2) 

q(x,l)L~=l= 00-~4 I==/= 0; (4.3) 

q(x,l)l== o = 0w41 = 1 during injection, (4.4) 
OX I=ffiO 

In an injection regime, the set of subsequent states of the crack can be ordered using any monotonically 
varying parameter, for example, the magnitude of opening in the center. The state at the moment of injection 
termination can be characterized by the parameter to00, which is the value of half-opening in the center. 
Generally speaking, in an outflow regime the opening depends on to00. In contrast to the general case, for 
an impermeable medium this dependence is found analytically. During injection and flowback, the solution 
for an arbitrary value of woo is reduced to the solution for some fixed value, for example, for to00 = 1. This 
follows from the invm'iance of the entire system (4.1)-(4.5) relative to the scale transformations to --} to00to, 

to oX, and t ,,,oSot. 
If one  cons iders  t h e  so lut ion  for woo = I and a usual  [1] ratio of  the  f low rates during f lowba~k and 

injection a - 0.25, the injection duration is to - 0.9735 and the 1]owba~k duration is tc - to = 0.8122, where 
tc = 1.7857 is the moment of crack closure in the center, which is assumed to be the moment of flowback 
cessation. 

For woo ~ 1, we denote the ratio too/woo by t~0. It is convenient to pass to the variable r defined by 
relation (3.3). Based on the above symmetry of Eqs. (4.1)-(4.5), we can state that in a flowback regime, the 
subsidence in the center is described, in the chosen coordinates (t~0, ~), by the universal curve 1 of Fig. 4, 
which does not depend on the injection and flowback duration. 

We shall express t~0 and r via the dimensional quantities W(O,T) = W ( X , T ) I x =  ~ and T: 

W(O, T) T - To 
t~0 = W(0,0-----~' r = T c ~ "  (4.6) 

The quantity t~0 can be expressed also via the measured pressure. According to (I.1) and formulas 
(4.6), we have 

P(T)  - Pc 
~o = P(To) - Pc" (4.7) 

Together with the subsidence curve for an impermeable medium, Fig. 4 shows the dependence ~0(r) 
calculated within the framework of the general model (1.6)-(1.8) for the cases of small and moderate fluid 
losses (10 = 0.1 and 1 curves refer to 2 and 3, respectively). Clearly, all the curves are fairly close. This means 
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that the fluid losses have no significant effect on the character of pressure drop P(T) during flowback in layers 
of poor and moderate permeability. 

At first sight, this insensitivity seems strange. Indeed, if the fluid losses are not negligible, they have 
an effect on the crack profile already in an injection regime, particularly after its completion (the formation 
of the initial crack profile for flowback) and necessarily affects the deformation of the profile during flowback. 
Nevertheless, the pressure drop in the center mainly depends on what happens in its close proximity. An 
intense flowback occurs sufficiently rapidly and for this time the perturbation induced by a change of the 
regime does not propagate far and, therefore, the crack does not stop even at the moment of its collapse in 
the central part. At the same time, the subsidence in the center is due to processes occurring only in this 
comparatively smM1 perturbed zone. In the zone that we axe interested in, the fluid losses are insignificant in 
comparison with the flow rate during flowback. Here, in forming the initial profile of the crack at the flowback 
stage, the rate of the total fluid losses is small as well in comparison with the flow rate during injection. 

The universal specifics in the pressure drop during flowback are especially useful for calculation of 
the closure pressure Pc with the use of hydraulic fracturing data. Relation (4.7) includes the moment Tc 
of crack closure in the center and the pressure Pc, which is very difficult to find immediately from the 
measurements. However, if one considers the second equation in (4.6) together with (4.7) with the use of the 
P(T) measurement data in a flowback regime, we obtain a system of algebraic equations that is sufficient 
for finding Pc at least, at two more points T1 and T2, in addition to the point To, with the known function 
t~0(r). It is possible to show that to improve the accuracy, the moment T1 should be chosen before a break 
in the curve P(T) occurs, but not too close to To, and the moment T2 should be chosen after a break of the 
curve, but not too close to T1 or To. It follows from the dependences in Fig. 4 that the pressure at the point 
of infection of the curve P(T) does not coincide with the closure pressure, which contradicts the popular 
opinion [1]. 
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